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ABSTRACT 

Understanding the impacts of urbanization requires accurate 
and updatable urban extent maps. Here we present an 
algorithm for mapping urban extent at global scale using 
Landsat data. An innovative hierarchical object-based 
texture (HOTex) classification approach was designed to 
overcome spectral confusion between urban and nonurban 
land cover types. VIIRS nightlights data and MODIS 
vegetation index datasets are integrated as high-level 
features under an object-based framework. We applied the 
HOTex method to the GLS-2010 Landsat images to produce a 
global map of human built-up and settlement extent. As 
shown by visual assessments, our method could effectively 
map urban extent and generate consistent results using 
images with inconsistent acquisition time and vegetation 
phenology. Using scene-level cross validation for results in 
Europe, we assessed the performance of HOTex and 
achieved a kappa coefficient of 0.91, compared to 0.74 from a 
baseline method using per-pixel classification using spectral 
information.  

Index Terms — Object-based Classification, Hieratical 
Segmentation, Texture, Urban, Landsat 

1. INTRODUCTION
Urbanization has broad impacts on the Earth’s 

environmental systems [1]. Understanding the drivers, 
impacts and feedbacks of urban growth requires detailed and 
up-to-date information on the spatial extent of urban areas. 
Coarse to medium resolution remote sensing datasets, such 
as the Defense Meteorological Satellite Program Operational 
Linescan System (DMSP-OLS) and Moderate Resolution 
Imaging Spectroradiometer (MODIS)), have been used to 
map urban extent at global scale [2, 3]. However, the 
complexity of urban landscape requires much finer resolution 
data sources to be accurately mapped [4]. Publicly available 
Landsat-grade datasets are the optimal sources for mapping 
urban extent at global scale. Global orthorectified cloud-free 

Landsat datasets have been collected through Global 
Landsat Survey (GLS) [5], which has greatly reduced the 
difficulty of global urban mapping. 

Most pixels within the urban extent are mixtures of urban 
and non-urban surfaces. Even for pixels with a single type of 
surface cover, they often have similar spectral signatures as 
the same cover type in non-urban areas. Another challenge 
to Landsat-based urban mapping is the inconsistency of 
vegetation phenology among the images available. In this 
case, deciduous vegetation and non-vegetated surfaces may 
be difficult to separate. Further, classification of adjacent 
images with different vegetation phenology using spectral-
based methods can result in artifacts and discontinuities 
along image boundaries. 

The main purpose of this study is to develop an 
approach suitable for global scale mapping of human built-
up and settlement extent (HBASE) using the GLS images. 
The HBASE definition includes all types of human built-up 
surfaces and the areas surrounding them that are 
functionality linked to those surfaces (e.g., urban green 
spaces). Building on past efforts to meet the challenges of 
urban mapping using spatial image features such as edge 
density and gray level co-occurrence matrix (GLCM) [6], we 
introduce here a method based on hierarchical object-based 
textures (HOTex) using texture measures derived from 
objects at multiple levels of segmentation hierarchy and 
integrating high-level features based on the Visible Infrared 
Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) 
and MODIS vegetation index (VI) datasets. 

2. METHODOLOGY
The HOTex method consists of the following major 

components: derivation of hierarchical image segments, 
texture calculation, high-level feature extraction, training and 
classification, and post-classification processing (Fig. 1). In 
this study, the GLS-2010 images were used to derive image 
segments and texture measures. Nightlight data obtained 
from the VIIRS DNB band and a MODIS VI data set were 
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used to derive high level features in order to improve 
classification performance. The OpenStreetMap road 
network dataset was used in post-classification processing 
to improve representation of major roads in the derived 
HBASE product. 
 

 
Figure 1. Overall workflow of the HOTex method. 

Image segmentation was performed using the Recursive 
Hierarchical Image Segmentation (RHSeg) software package 
[7], a recursive approximation of the Hierarchical Image 
Segmentation (HSeg) package. HSeg combines the power of 
best merge region growing to delineate the boundaries 
between spatially adjacent region and spectral clustering to 
group spatially disjoint regions together. RHSeg was 
designed to improve the speed of the HSeg algorithm on 
cluster or cloud computing systems, which made it possible 
processing all Landsat images required by this study. The 
output of RHSeg algorithm includes image objects at 
multiple scales, where finer scale objects are nested within 
coarser scale objects. In this study, we used object size 
thresholds to select three representative levels from the 
RHSeg segmentation hierarchy. 

At each level, we calculated GLCM features including 
angular second moment, contrast, correlation, and variance 
using objects instead of windows as spatial units. In 
addition to traditional single-band texture features, we also 
extended the concept of GLCM by using the co-occurrence 
between two Landsat bands to calculate cross-band (color) 
texture features. The single-band textures are calculated for 
the Landsat spectral bands 5, 4 and 3. Since our 
implementation of GLCM is symmetrical, the cross-band 
textures are only calculated for the band combinations (5, 4), 
(4, 3) and (5, 3). 

Three groups of variables were derived in addition to the 
textures. The first was a binary variable indicating whether 
an image was a Landsat 7 image, in order to separate images 
with and without SLC-off gaps. We used metrics derived 
from MODIS normalized difference vegetation index (NDVI) 
datasets, including annual maximum, annual median, and the 
NDVI value for the month when the corresponding Landsat 
image was acquired. And finally we used statistics derived 
from VIIRS DNB datasets. 

We collected training samples of HBASE/non-HBASE 
image objects by interpreting of Landsat images. Different 

sets of features were used as inputs to train random forest 
classification models in order to determine the best feature 
set for mapping HBASE. For comparison, we also tested a 
baseline method using spectral features only, which are the 
Landsat bands, the tasseled cap transform, and NDVI. 

 
3. RESULTS 

3.1 Mapping Results and visual assessments 

First, we visually examined the HBASE products derived 
using the HOTex approach against the results the baseline 
method using spectral features (Fig. 2). We found that the 
HOTex method generates consistently better results than the 
baseline method in terms of the compactness of built-up and 
settlement extent, the removal of commission errors in areas 
such as agricultural fields and bare lands, and the inclusion 
of low density built-up areas and settlements.  

 
Figure 2. Comparisons of HBASE classifications derived 

using the baseline method and the HOTex method.  
Then, we examined the overall performance of our 

method over Europe by creating a continental mosaic of 
HBASE maps (Fig. 3). As shown by an example of the 
mapping results for two adjacent Landsat scenes, the 
spectral-based baseline method is sensitive to seasonal 
differences in the image and produced a clear difference 
across the image boundary, while the HOTex method 
produced consistently accurate results without such 
artifacts. 

Finally, we applied the HOTex method to the entire GLS-
2010 archive to create global HBASE products. These 
products are yet to be assessed. However, the overall spatial 
pattern suggests a robust performance globally (Fig. 4). 



3.2 Scene-level cross validation 

We performed scene-level cross validation by dividing 
the Landsat scenes where training data were collected into 
10 random groups. Training samples from 9 of the 10 scene 
groups were used together to train the random forest 
algorithm, which was then evaluated using reference 
samples in the set-aside image group. This was repeated 10 
times such that each time samples from a different image 
group were used to evaluate the random forest model 
derived using samples from the other 9 image groups. We 
calculated cross validation accuracy scores including overall 
accuracy, kappa coefficient, as well as producer’s and user’s 
accuracies for the HBASE class (Table I). 

 

 
Figure 3. A continental mosaic of HBASE products over 
Europe and a mosaic for two overlapping Landsat tiles: (a) 
Landsat images p190r025 and p189r025; (b) spectral-based 
classification; (c) classification using the HOTex method. 

TABLE I 

Scene-level cross validation scores of HBASE classifications 
using different input feature sets (OA: overall accuracy, UA: 
user’s accuracy, PA: producer’s accuracy). 

 OA UA PA KAPPA  

SPECTRAL 94.0% 76.5% 78.1% 0.74 

GLCM 96.8% 86.2% 89.9% 0.83 

GLCM+VI 97.1% 91.1% 86.3% 0.87 

GLCM+DNB 97.1% 86.6% 92.3% 0.88 

GLCM+DNB+VI 97.9%  91.4%  92.8%  0.91 

 
 

 
 
Figure 4. Global 500m mosaic (Robinson projection) of 
HBASE products produced using the HOTex method and 
the Global Land Survey 2010 archive: (a) Eurasia, Africa and 
Australia; (b) North America and South America. 

3.3 Comparison with other urban maps 

We also compared our HBASE maps and other urban 
products including the 1km Global Rural-Urban Mapping 
Project (GRUMP) dataset [8], the 500m MODIS Collection 5.1 
land cover product (MCD12Q1) [3], the 300m GlobCover 
product [9], and the GlobeLand30 product [10]. The 
comparisons were done based on the functional urban areas 
(FUAs) as defined by Urban Atlas 2012 (UA), an urban map 
for EU-27 countries developed using high-resolution 
imagery and auxiliary datasets [11]. FUA incorporates cities 



with spatial proximity and functional connection and also 
open spaces in between. For all the 437 FUAs available at 
the time of this study, we calculated the size of urban extent 
within each FUA. The scatterplots in Fig. 5 are urban extent 
sizes of HBASE (x-axis) plotted against urban extent sizes of 
the five urban products compared (y-axis). The result shows 
that MODIS and Globcover products greatly underestimate 
urban extent compared to UA, while the GRUMP product 
tend to overestimate. According to the root mean square 
difference (RMSD) scores, our HBASE product agrees best 
with the UA product, slightly better than GlobeLand30. 

 
Figure 5. Size of urban atlas (UA) urban extent for the FUAs 
(x-axis) plotted against size of urban extent from: (a) HBASE, 
(b) GlobeLand30, (c) MODIS, (d) GRUMP, (e) GlobCover. 
 

4. CONCLUSION 
A hierarchical object-based texture (HOTex) approach 

was developed for mapping global human built-up and 
settlement extent (HBASE). Segmented hierarchical image 
objects provided a framework for integrating multi-level 
textures and integrating coarser resolution VIIRS DNB and 
MODIS VI for classification. According to scene-level cross 
validation, the kappa, user’s and producer’s accuracies of 
HBASE products derived using the proposed algorithm are 
all over 90%. Visual assessments and comparisons between 
our HBASE product and other urban products also 
demonstrated the effectiveness of the HOTex approach for 
mapping human built-up and settlement areas globally. 
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